The most important process(es) in ecoinvent 2.2

Chris Mutel

Ecological Systems Design Institute for Environmental Engineering ETH Zürich, Switzerland

Email contact: mutel@ifu.baug.ethz.ch

Introduction

Methodology

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

ETH

- Over time, inventory databases should increase in quality as well as quantity. This requires prioritizing some datasets for increased data quality.
- Ecoinvent 2.2 has over 4000 inventory datasets, but most of them do not substantially effect LCA scores.

Direct contributions 3] sum the total characterized emissions 1] for each dataset*, 2] for each method: from each inventory process

CML 2001, resources, depletion of abiotic resources IPCC 2007 GWP, 100 year timeframe ReCiPe Midpoint, freshwater eutrophication ReCiPe Midpoint, ionising radiation ReCiPe Midpoint, marine eutrophication ReCiPe Midpoint, ozone depletion ReCiPe Midpoint, photochemical oxidant formation ReCiPe Midpoint, agricultural land occupation ReCiPe Midpoint, terrestrial acidification USEtox, ecotoxicity USEtox, human toxicity, carcinogenic USEtox, human toxicity, non-carcinogenic We chose 12 LCIA methods based on EU JRC recommendations and statistical independence of LCA

results. Not all results are can be shown here.

diesel, burned in building machine

blasting

|n=4063

Indirect contributions 1] for each dataset, modify the 2] with the modified 3] and technosphere, for each technosphere matrix by LCA score method each dataset deleting its inputs \bigotimes

0.092

0.051

NG

0.100

0.073

4] calculate the relative change in n=12 * 4063* 4063 N=12

* So-called "system" datasets (confidential datasets where only aggregated results are given) were removed from the results

Direct contributions

pi

crude oil, at production onshore

crude oil, at production

Name	Geo	Median	Mean	Name		Median	Mean	Name	Geo	Median	Mean
ignite, burned in power plant	DE	0.016	0.032	lignite, burned in power plant	DE	0.016	0.032	disposal, spoil from lignite min., in surface landfill	GLO	0.423	0.426
nard coal, burned in power plant	DE	0.013	0.026	hard coal, burned in power plant		0.013	0.026	disposal, spoil from coal mining, in surface landfill	GLO	0.148	0.205
natural gas, burned in industrial furnace >100kW	RER	0.009	0.038	natural gas, burned in industrial furnace >100kW	RER	0.009	0.038	disposal, sulfidic tailings, off-site	GLO	0.083	0.181
nard coal, burned in power plant	PL	0.007	0.015	hard coal, burned in power plant	PL	0.007	0.015	disposal, basic oxygen furn. w., o% water, landfill	СН	0.006	0.022
pig iron, at plant	GLO	0.006	0.022	pig iron, at plant	GLO	0.006	0.022	disposal, lignite ash, o% water, to opencast refill	DE	0.001	0.001
CML 2001, resources, depletion of abiotic resources IPCC 2007 GWP, 100					timefro	ame		ReCiPe Midpoint, freshwater eu	ıtrophi	ication	
crude oil, at production onshore	RME	0.150	0.162	hardwood, standing, under bark, in forest	RER	0.368	0.393	natural gas, sour, burned in production flare	GLO	0.020	0.036
transport, natural gas, pipeline, long distance	RU	0.138	0.177	softwood, standing, under bark, in forest	RER	0.357	0.391	operation, transoceanic freight ship	OCE	0.014	0.031
crude oil, at production onshore	RAF	0.114	0.139	softwood, Scandinavian, standing, u. bark, in forest	NORD.	0.011	0.051	hard coal, burned in power plant	ES	0.010	0.024

ReCiPe Midpoint, ozone depletion

n=406

ReCiPe Mia	'point. ad	iricultural	' land	occupation
	<i>ponic</i> , <i>ag</i>		101110	occupation

hardwood, Scandinavian, standing, u. bark, in for.

green manure IP, until march

ReCiPe Midpoint, terrestrial acidification

0.010

0.010

RER

0.047

0.034

		,					510 40				
disposal, sludge fr. steel rolling, 20% water, landfill	СН	0.015	0.031	disposal, sludge fr. steel rolling, 20% water, landfill	СН	0.035	0.049	sinter, iron, at plant	GLO	0.009	0.019
disposal, spoil from coal mining, in surface landfill	GLO	0.020	0.051	disposal, spoil from coal mining, in surface landfill	GLO	0.041	0.077	zinc, primary, at regional storage	RER	0.010	0.060
disposal, basic oxygen furn. w., o% water, landfill	СН	0.023	0.044	disposal, basic oxygen furn. w., o% water, landfill	СН	0.051	0.074	ferronickel, 25% Ni, at plant	GLO	0.015	0.033
disposal, spoil from lignite min., in surface landfill	GLO	0.037	0.097	disposal, spoil from lignite min., in surface landfill	GLO	0.083	0.154	copper, primary, at refinery	RLA	0.031	0.072
disposal, slag, unall. electr. steel, 0% water, landfill	СН	0.085	0.161	disposal, slag, unall. electr. steel, o% water, landfill	СН	0.206	0.253	steel, electric, un- and low-alloyed, at plant	RER	0.078	0.145

NORD.

СН

0.001

0.001

USEtox, ecotoxicity

USEtox, human toxicity, carcinogenic

USEtox, human toxicity, non-carcinogenic

Median and mean contribution of individual datasets to total LCA score

0.013

0.007

- Against expectations, there are few datasets which contribute the vast majority of LCIA impacts
- Disposal processes have high relative impacts and high uncertainties, making them good candidates for focused data quality efforts

Indirect	Name	Geo	Median	Mean	Name	Geo	Median	Mean	Name	Geo	Median	Mean
mancee	electricity, production mix UCTE	UCTE	0.115	0.201	electricity, production mix UCTE	UCTE	0.094	0.185	lignite, at mine	RER	0.424	0.426
contributions	electricity, high voltage, production UCTE, at grid	UCTE	0.083	0.175	electricity, high voltage, production UCTE, at grid	UCTE	0.071	0.165	electricity, production mix UCTE	UCTE	0.388	0.419
contributions	electricity, medium voltage, at grid	UCTE	0.070	0.162	electricity, medium voltage, at grid	UCTE	0.057	0.154	electricity, high voltage, production UCTE, at grid	UCTE	0.309	0.369
	natural gas, at long-distance pipeline	RER	0.058	0.120	electricity, production mix DE	DE	0.029	0.059	electricity, medium voltage, at grid	UCTE	0.268	0.345
	natural gas, high pressure, at consumer	RER	0.058	0.118	electricity, lignite, at power plant	DE	0.017	0.032	lignite, burned in power plant	DE	0.166	0.166
	CML 2001, resources, depletion of	IPCC 2007 GWP, 100 year	ReCiPe Midpoint, freshwater eutrophication									
	natural gas, production RU, at long-dist. pipeline	RER	0.138	0.177	round wood, softwood, u. bark, u=70% at for. road	RER	0.339	0.376	electricity, production mix UCTE	UCTE	0.067	0.164
	crude oil, production RME, at long dist. transport	RER	0.129	0.140	round wood, softwood, debark., u=70% at for. road	RER	0.338	0.375	electricity, high voltage, production UCTE, at grid	UCTE	0.054	0.145
	crude oil, production RU, at long distance transpor	t RER	0.095	0.104	round wood, hardwood, u. bark, u=70%, at for. road	RER	0.332	0.369	electricity, medium voltage, at grid	UCTE	0.046	0.136
	natural gas, high pressure, at consumer	RER	0.071	0.153	sawn timber, hardwd, raw, pldebark., u=70%, at pl	. RER	0.256	0.303	crude oil, production RU, at long distance transport	RER	0.022	0.041
	diesel, at refinery	RER	0.071	0.146	sawn timber, hardwd, raw, air dried, u=20%, at pl.	RER	0.255	0.302	crude oil, at production onshore	RU	0.021	0.041
	ReCiPe Midpoint, ozone d	epletic	on		ReCiPe Midpoint, agricultural land occupation				ReCiPe Midpoint, terrestrial acidification			

USEtox, ecotoxicity					USEtox, human toxicity, non-carcinogenic						
lignite, at mine	RER 0.037 0.099		0.099	electricity, high voltage, production UCTE, at grid	UCTE	0.058	0.150	electricity, medium voltage, at grid	UCTE	0.026	0.071
electricity, high voltage, production UCTE, at grid	UCTE	0.038	0.104	lignite, at mine	RER	0.083	0.155	electricity, high voltage, production UCTE, at grid	UCTE	0.029	0.074
electricity, production mix UCTE	UCTE	0.047	0.117	electricity, production mix UCTE	UCTE	0.087	0.169	electricity, production mix UCTE	UCTE	0.037	0.083
reinforcing steel, at plant	RER	0.054	0.140	reinforcing steel, at plant	RER	0.107	0.211	reinforcing steel, at plant	RER	0.048	0.115
steel, electric, un- and low-alloyed, at plant	RER	0.071	0.141	steel, electric, un- and low-alloyed, at plant	RER	0.159	0.217	copper, at regional storage	RER	0.049	0.113

USEtox, ecotoxicity

USEtox, human toxicity, non-carcinogenic

Median and mean change in LCA score, normalized relative to LCA score with no technosphere modification. A value of zero means no change; a value of one means the LCA score with the modified technosphere is now zero.

- Energy datasets datasets are consistently • There is little overlap between direct and indirect important, and have strong network effects contributions to total LCA scores
- Conclusions
- The often-used energy supply and mixing processes could be split into more specific datasets
- Database meta-analysis is a useful tool for prioritization and exploration

