PAUL SCHERRER INSTITUT

eSS

ir schaffen Wissn - eute iir morgen

Paul Scherrer Institut
Chris Mutel

Temporal life cycle assessment:
Critical review and a simplified approach

PSI, October 2015




Wait, what is happening now?

RAYMOND CARVER

1. Links in supply chain WHAT WE TALK
graph are distributed ABOUT WHEN WE
through time TACKTBOUE

-

2. Assess effects of
emissions throughout
time

3. Total impact of emissions
varies as a function of
time emitted

Temporal LCA can mean at least three different things, and we will explore all three.
All cites available at the Mendeley group for dynamic LCA: https://www.mendeley.com/groups/4995001/dynamic-lca/




Meaning 1: Supply chain links spread over time

o

O

/

0

N g

/ ™\

First, we can locate our processes and exchanges in time.




Meaning 1: Supply chain links spread over time

Locate processes

absolutely in time
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BUILDINGS AND BUILDING MATERIALS

Dynamic life cycle assessment: framework and application

to an institutional building
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Abstract

Purpose This paper uses a dynamic life cycle assessment
(DLCA) approach and illustrates the potential importance of
the method using a simplified case study of an institutional
building. Previous life cycle assessment (LCA) studies have
consistently found that energy consumption in the use phase of
a building is dominant in most environmental impact catego-
ries. Due to the long life span of buildings and potential for
changes in usage patterns over time, a shift toward DLCA has

ed: 31 October 2012 /Published online: 24 November 2012

ces of life cycle inventory data and temporally explicit
le impact assessment characterization factors, where
able. The DLCA model was evaluated for the historical
and projected future environmental impacts of an existing
institutional building, with additional scenario development
for sensitivity and uncertainty an: of future impacts.

Results and discussion Results showed that overall life cycle
impacts varied greatly in some categories when compared to
static LCA results, generated from the temporal perspective of

Collinge showed how each process could occur at an absolute time. It is then easy to plot the life cycle of our functional unit
in time. However, most of the time we want relative times, i.e. an input or emission occurs before or after a process occurs.




Meaning 1: Supply chain links spread over time
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We can distribute exchanges and biosphere flows in time using our standard statistical toolkit: distribution functions, either
analytical or discretised into arrays.



Meaning 1: Supply chain links spread over time

Convolution
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Combining two different temporal exchanges is easy, though it sounds complicated: we call it “convolution”. The graph
shows the convolution of the green and blue temporal distributions to produce the red distribution.



Meaning 2: Spread emissions effects over time

Radiative forcing
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A second meaning of temporal LCA is to spread our characterisation factor over time. The most prominent example is
radiative forcing for greenhouse gases, which is a function of atmospheric lifetime, but also the atmospheric mixing time and
other physical processes.



Meaning 2: Spread emissions effects over time

Methodology is
simple

Models taken from
the subject areas
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The lack of temporal information is an important limitation of
life cycle assessment (LCA). A dynamic LCA approach is proposed
toimprove the accuracy of LCA by addressing the inconsistency
of temporal assessment. This approach consists of first
computing a dynamic life cycle inventory (LCI), considering
the temporal profile of emissions. Then, time-dependent
characterization factors are calculated to assess the dynamic

(1).LCIA methods have been developed using natural science-
based modeling to link the inventory results to the envi-
ronmental problems they cause. Each of these LCIA methods
provides characterization factors that linearly represent the
contribution of amass of a given pollutant to a specificimpact
category, such as global warming, acidification, human
toxicity, etc. (4).

Inventory results represent aggregated mass loadings, as
they are the sum of several amounts of pollutant emitted by
different processes spread out in space and time (5). Because
of the lack of temporal information, LCIA traditionally relies
on restricted steady-state models, and this reliance is
considered to be an important limitation of LCA because it
decreases its accuracy (2, 3). Releasing a big amount of
pollutant instantaneously generally does not have the same
impact as releasing the same amount of pollutant at a small
rate over several years.

This paper introduces the concept of dynamic LCA in
order to improve the methodology regarding temporal issues.
In a dynamic LCA, the temporal profiles of emissions are
considered so that the LCI result for each emission is a
function of time rather than a single number. Once a dynamic
inventory is calculatedd, the LCIA characterization model is
solved dynamically, i.e. without using steady-state assump-
tions, to obtain time-dependent characterization factors that
depend on the moment when the pollutant is emitted. For
this paper, we explored the temporal aspects of one particular
impact category, global warming.

This meaning has a lot of literature, especially concerned with criticising existing indicators such as “IPCC 100”, and
proposing new single-value indicators. In my opinion, we would be better served to move away from a single number and
show the integration of our different characterised flows over time.



Meaning 3: CFs are f(year emitted)

Global warming impact
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A third meaning is changing the total CF depending on time of emission. Most CFs are marginal, which means that they
depend on a certain background level of exposure, which can change over time. Although it adds complexity, we sometimes
want to be able to include this dynamic interaction, as things like climate urgency are real considerations for policy makers.



Meaning 3: CFs are f(year emitted)

Methodology is
simple

Models taken from

the subject areas
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NON-TOXIC IMPACT CATEGORIES ASSOCIATED WITH EMISSIONS TO AIR, WATER, SOIL

Assessment of urgent impacts of greenhouse gas
emissions—the climate tipping potential (CTP)
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Climate impacts of energy technologies depend

on emissions timing

Morgan R. Edwards' and Jessika E. Trancik2*

Energy technologies emit greenhouse gases with differing
radiative efficiencies and atmospheric lifetimes'™. Standard
practice for evaluating technologies, which uses the global
warming potential (GWP) to compare the integrated radiative
forcing of emitted gases over a fixed time horizon*, does
not acknowledge the importance of a changing

their climate impacts on a single scale. For technology evaluation,
equivalency metrics must be forward-looking and robust to
inherent uncertainties about the future climate scenario, to inform
the advanced commitment needed to develop new technologies

climate relative to climate change mitigation targets®®. Here
we demonstrate that the GWP misvalues the impact of
CH,: g as mid-century and we
propose a new class of metrics to evaluate technologies based
on their time of use. The instantaneous climate impact (ICl)
compares gases in an expected radiative forcing stabilization
year, and the cumulative climate impact (CCI) compares their
time-integrated radiative forcing up to a stabilization year.
Using these dynamic metrics, we quantify the climate impacts
of technologies and show that high-CH.-emitting energy
sources become less advantageous over time. The impact
of natural gas for transportation, with CH, leakage, exceeds
that of gasoline within 1-2 decades for a commonly cited
3Wm™? stabilization target. The impact of algae biodiesel
overtakes that of corn ethanol within 2-3 decades, where algae
co-products are used to produce biogas and corn co-products

and i Determining an metric for this
i is becoming increasingly urgent as we consider major
public and private i ies with significant CH,

i
emissions, including natural gas"'*,

Although many equivalency metrics have been proposed,
previous research has not emphasized testing their performance
against intended climate goals to determine a principled treatment
of time in metric formulations. Here we propose a new class of
dynamic metrics that, unlike the static GWP(r), are designed to
avoid an overshoot of an intended radiative forcing stabilization
level. We develop a method to test the performance of these and
other metrics against this climate change mitigation goal. The
new metrics differ from other dynamic metrics** in that they
do not require detailed information about the emissions scenario
for achieving the mitigation goal. Climate targets are commonly
formulated around a stabilization level”’, which can be reached by a
number of emissions scenarios. The proposed metrics are designed
to evaluate technologies in this context.
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There has been some recent literature on climate urgency and metrics for life cycle assessment.




Supply chain links spread over time
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The methodology for meanings 2 & 3 are relatively straightforward, but meaning 1 - temporal exchanges - requires a new
approach. Building a linear set of equations doesn’t work; we need to propagate the relative temporal shifts as we traverse
the supply chain.



Enhanced Structural Path Approach

O =E(I+T+T+T ++T+ - +T")F

- Each series step is one level deeper in supply chain
- One additional temporal convolution
- Not actually matrix math
- Barna (manuscript)

- Graph traversal algorithm instead of matrix
formulation

- Detailed process model
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One way of doing this is do the power series expansions, but include convolution. We can’t use traditional matrix math, as
each element in the technosphere matrix is (potentially) a distribution instead of a number, so we need to convolute instead
of just multiplying.



Supply chain graph traversal: Breadth first
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ESPA is a breadth first graph traversal algorithm. Each layer in the supply chain is another power in the previous slide’s
equation.



Supply chain graph traversal: Depth first
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There are other graph traversal algorithms. Depth first instead goes down the supply chain instead of across. This doesn’t
work well in LCA, as our graphs are cyclic (i.e. have loops), and can be quite deep.



Challenges & Solutions: Importance first
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Instead, brightway2-temporalis uses a different graph traversal algorithm. | am sure this exists somewhere, but | am not sure
what it is called. | call it “importance-first”. We use the potential total LCA scores of each branch to evaluate the traversal
order, and stop after reaching a cutoff criteria.



Challenges & Solutions: Importance first
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Cyclic graphs prevent a challenge - our graph can never be exhaustively searched. Remember, the values change each time
we visit a node, as we are shifting forwards and backwards in time as we traverse temporal exchanges.



Supply chain graph traversal: Cutoff
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Some authors propose using temporal cutoffs, i.e. ignore processes that occur outside of a certain time window.
Instead, we cutoff based on worst-case characterised results; we calculate the worst values each CF can possibly be, and
can use that to evaluate whether a branch of the supply chain graph could possibly be important.



What do we want?

1. No arbitrary temporal

resolution
2. Computational
efficiency {
"type": "biosphere",
3. Transparent and "amount”: 87,
ﬂeXible mOdel "input": ("biosphere", "co2"),
] "input": ("ecoinvent", "some process"),
representation "temporal distribution": [
(0, 50),
(1, 20),
(2, 10),
(3, 5),
(4, 2)

For our data format, we want to avoid arbitrary restrictions on timescales, as well as be efficient and transparent. Flexibility
is key, as we don’t know what and how is really needed. The temporalis format is just an array of years (can be fractional)

and amounts...



What do we want?

resolution

2. Computational
efficiency

3. Transparent and
flexible model
representation

1. No arbitrary temporal

In [1]:

Out[l]:

def make_ it funky():
return [(x, 10 - x) for x imn range(10)]

my_exchange = {
"type": "biosphere",
"amount": sum([x[1] for x in make_it_funky()]),
"input": ("biosphere", "co2"),
"input": ("ecoinvent", "some process"),
"temporal distribution": make_it_funky()

}

my_exchange

{'amount': 55,
'input': ('ecoinvent', 'some process'),
'temporal distribution': [(0, 10),

(1,
(2,
(3,
(4,
(5,
(6,
(7,
(8,
(9,

9)
8),
7)
6),
5),
4),
3),
2),
D1,

'type': 'biosphere'}

... but you can also use functions.




How to pick processes to temporalize?

Compare timescales of
processes and impact

categories
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LCI METHODOLOGY AND DATABASES

Temporal differentiation of background systems in LCA:
relevance of adding temporal information in LCI databases
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Abstract
Purpose Because the potential impacts of emissions and
extractions can be sensitive to timing, the temporal aggre-
inventory (LCI) data
ment (LCA). U
nd extraction distri-
cground pro of
ve of this paper is to

gation of life cycl
cited as a limitation in fife

product systems. The objet aluate
the relevance of considering the temporal distribution of
the background system inventor

Methods The paper focuses on the global warming impact

foreground system is temporally differentiated, and (2) sys-
tems in which temporal information was also added o the
ground system. For 8.6 % of the database product
. adding temporal differentiation to background unit

For most of the affected product systems,
ound unit

lering temporal information in the
warming impact scores.

iation of background unit processes are 2
with wood and biof
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LCI METHODOLOGY AND DATABASES

How to take time into account in the inventory step: a selective
introduction based on sensitivity analysis
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Abstract
Purpose L
which only considers steady-state processes.
and spatial dimensions are lost during the lif
(Lo, approach therefore reduces the environmental
relevance of certain results, as it has been underlined in the
case of climate change studies. Given that the development of
dynamic impact methods is based on dynamic inventory data,
itseems essential to develop a general methodology to achieve
a temporal LCIL

Methods This study presents a method for selecting the steps,
within the whole process network, for which dynamics need to
be considered while others can be approximated by steady-state

e assessment is usually an assessment tool,
s the temporal

ady

Meta-analysis of database,

August 2013

flows: 0.1 % in the sugarcane ethanol production and 0.01 %
in the palm methyl ester production. Future developments of
time integration in the LCI and in the |
ment (LCIA) are also discuss
of characterization functions and the recurrent problem of
waiing times.

Conclusions This work provides a method to select specific
flows where the introduction of temporal dynamics is most
relevant. It is based on sensitivity analyses and on the rela-
tionship between the i of the flows and the timescale
of the involved impact. The time-distributed LCI generated by
using this approach could then be coupled with a dynamic
LCIA proposed in the literature.

per impact category
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A final question is how to determine which inventory processes or exchanges need temporal information. Two nice papers
have been published on this, looking at the timescales of impact categories, and doing meta-analysis of ecoinvent 2.2.
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Feel free to contact me for questions or polite criticism.



